

LIS008696771B2

(12) United States Patent Palo et al.

(54) COMPACT INTEGRATED COMBUSTION REACTORS, SYSTEMS AND METHODS OF CONDUCTING INTEGRATED COMBUSTION

(75) Inventors: **Daniel R. Palo**, Philomath, OR (US);

Jamelyn D. Holladay, Kennewick, WA (US); Robert A. Dagle, Richland, WA (US); Robert T. Rozmiarek, Middleton,

WI (US)

(73) Assignee: Battelle Memorial Institute, Richland,

WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 937 days.

(21) Appl. No.: 11/611,461

REACTIONS

(22) Filed: Dec. 15, 2006

(65) Prior Publication Data

US 2007/0172402 A1 Jul. 26, 2007

Related U.S. Application Data

- (60) Provisional application No. 60/751,125, filed on Dec. 16, 2005.
- (51) **Int. Cl. C01B 6/24** (2006.01) **B01J 7/00** (2006.01)
- (52) **U.S. Cl.**USPC **48/61**; 48/197 R; 422/625; 423/644

(56) References Cited

U.S. PATENT DOCUMENTS

5,015,444 A 5/1991 Koga et al. 5,324,452 A 6/1994 Allam et al. (10) Patent No.: US 8,696,771 B2 (45) Date of Patent: Apr. 15, 2014

5,534,328 A	7/1996	Ashmead et al.
5,776,421 A	7/1998	Matsumura et al.
5,811,062 A	9/1998	Wegeng et al.
5,846,494 A	12/1998	Gaiser
5,858,314 A	1/1999	Hsu et al.
5,861,137 A	1/1999	Edlund et al.
6,117,578 A	9/2000	Lesieur
6,129,973 A	10/2000	Martin et al.
6,143,943 A	11/2000	Oroskar et al.
6,159,358 A	12/2000	Mulvaney et al.
6,159,434 A *		Gonjo et al 422/191
(Continued)		

FOREIGN PATENT DOCUMENTS

EP 1090878 A1 8/2000

OTHER PUBLICATIONS

PCT Int'l Search Report and Written Opinion, mailed Jun. 14, 2007, PCT/US2006/047936.

(Continued)

Primary Examiner — Matthew Merkling (74) Attorney, Agent, or Firm — Derek H. Maughan; Frank Rosenberg

(57) ABSTRACT

A compact integrated combustion reactor is described. In a preferred embodiment, the combustion catalyst is disposed in a staggered configuration such that the hot spot in an adjacent endothermic reaction chamber is substantially less than would occur with a conventional, unstaggered configuration. The integrated reactor may also include a methanation chamber for methanation of a reformate product. Systems containing reactant and product streams, and methods of conducting integrated combustion reactions are also described. A staggered catalyst conformation can be used more broadly for thermal chemical reactions requiring heat transfer in a layered device.

28 Claims, 5 Drawing Sheets

